摘 要 本文對低溫高濕環(huán)境下的
HART475手操器結(jié)霜特性進(jìn)行了實(shí)驗(yàn)研究,分析了進(jìn)風(fēng)溫度、相對濕度對HART475手操器結(jié)霜量、霜層厚度、管壁溫度以及蒸發(fā)溫度的影響。實(shí)驗(yàn)結(jié)果表明:HART475手操器表面結(jié)霜量隨著時(shí)間呈線性增長,霜層厚度隨著時(shí)間的變化分為線性增長段和加速增長段,管壁溫度和蒸發(fā)溫度隨著時(shí)間的變化分為緩慢下降段和快速下降段。同時(shí),霜層厚度、結(jié)霜量隨著進(jìn)風(fēng)溫度的升高和相對濕度的增大而增大,HART475手操器管壁溫度和蒸發(fā)壓力隨著進(jìn)風(fēng)空氣溫度的降低和進(jìn)風(fēng)相對濕度的增加而降低。
結(jié)霜是普遍發(fā)生在制冷、冷凍、冷藏、低溫運(yùn)輸裝置及航空航天等工程領(lǐng)域的自然現(xiàn)象。當(dāng)進(jìn)風(fēng)空氣溫度較低且相對濕度較大時(shí),蒸發(fā)器表面就會(huì)發(fā)生結(jié)霜現(xiàn)象,霜在HART475手操器表面的沉積增加了冷壁面與空氣間的導(dǎo)熱熱阻,惡化了傳熱效果。同時(shí),霜層的增加產(chǎn)生的阻塞大大增加了空氣流過HART475手操器的阻力,在以風(fēng)機(jī)驅(qū)動(dòng)的HART475手操器中造成風(fēng)機(jī)風(fēng)量下降,兩種因素的共同作用,使得制冷系統(tǒng)的性能系數(shù)迅速降低。因此,深入研究HART475手操器翅片表面的結(jié)霜規(guī)律,對提高制冷系統(tǒng)能效比,節(jié)約能源消耗等方面具有重要意義。20世紀(jì)80年代 S.N.Kondepadi等人 [1,2] 將結(jié)霜模型和傳熱特性相結(jié)合進(jìn)行了討論,建立了HART475手操器結(jié)霜模型,并對HART475手操器進(jìn)行了實(shí)驗(yàn)研究,將實(shí)驗(yàn)數(shù)據(jù)與模擬結(jié)果進(jìn)行了比較。近年來國內(nèi)外學(xué)者對HART475手操器結(jié)霜工況下流動(dòng)及換熱性能的研究仍很活躍,主要是通過建立數(shù)學(xué)模型對其性能進(jìn)行預(yù)測及實(shí)驗(yàn)研究,探討各因素對霜層生長及流動(dòng)和換熱特性的影響。Seker D. [3]數(shù)值模擬了HART475手操器的結(jié)霜性能,計(jì)算了空氣側(cè)動(dòng)態(tài)熱質(zhì)傳遞系數(shù)、空氣-霜界面溫度、換熱表面效率及結(jié)霜量;Yan W.M. [4] 實(shí)驗(yàn)研究了不同類型HART475手操器性能,討論空氣流量、相對濕度、制冷劑溫度及翅片形式對HART475手操器熱力、流動(dòng)性能的影響;Tso C.P. [5] 考慮霜厚沿翅片的變化建立了結(jié)霜工況下HART475手操器性能預(yù)測的改進(jìn)模型;姚楊 [6] 等人對結(jié)霜工況下空氣源熱泵蒸發(fā)器性能進(jìn)行了模擬和分析;吳曉敏 [7-10] 等人采用分型理論對霜層初期生長過程進(jìn)行了數(shù)值模擬,分析了空氣流速、冷表面不均勻性、表面接觸角等對霜層生長過程的影響,并對波紋表面和水平冷表面結(jié)霜過程進(jìn)行了理論和實(shí)驗(yàn)研究;陳江平 [11-12] 等人對結(jié)霜工況下平行HART475手操器的換熱性能進(jìn)行了測試,研究了HART475手操器的換熱面積、表面換熱效率隨霜層的變化以及環(huán)境參數(shù)對蒸發(fā)器結(jié)霜?jiǎng)討B(tài)性能的影響。對低溫高濕環(huán)境下的HART475手操器結(jié)霜性能的研究相對較少,因此本文以此作為研究對象,分析進(jìn)風(fēng)空氣溫度和相對濕度對蒸發(fā)器結(jié)霜量、結(jié)霜厚度、管壁溫度、蒸發(fā)壓力等參數(shù)的影響,為研究HART475手操器低溫高濕環(huán)境下的結(jié)霜性能提供實(shí)驗(yàn)基礎(chǔ)。
1 實(shí)驗(yàn)裝置及測試方法
1.1 實(shí)驗(yàn)裝置
整個(gè)實(shí)驗(yàn)系統(tǒng)由焓差實(shí)驗(yàn)室、被測HART475手操器、測量系統(tǒng)三個(gè)部分組成。焓差實(shí)驗(yàn)室用于模擬實(shí)驗(yàn)所需的室內(nèi)外側(cè)環(huán)境;測量系統(tǒng)主要由壓力、溫度、濕度、風(fēng)速測量裝置及霜層厚度測量系統(tǒng)組成。實(shí)驗(yàn)系統(tǒng)圖如圖1所示。
1.2 測量儀器及測試方法
本實(shí)驗(yàn)裝置的測量系統(tǒng)包括結(jié)霜量測量裝置、霜層厚度測量裝置、室外HART475手操器壁溫測量裝置和制冷劑壓力測量裝置。
結(jié)霜量的測量是通過空氣進(jìn)出口含濕量差乘以空氣流量來間接測量的。在室外側(cè)HART475手操器進(jìn)風(fēng)處均勻布置16個(gè)風(fēng)速(美國TSI公司生產(chǎn)的8465型風(fēng)速傳感器)、溫濕度探頭(奧地利E+EELEKTRONIK Ges.m.b.H公司生產(chǎn)的多功能溫濕度變送器Serie EE23(HUMOR10型),HART475手操器的空氣流量通過HART475手操器進(jìn)風(fēng)處的平均風(fēng)速和HART475手操器迎風(fēng)面積計(jì)算得到,HART475手操器進(jìn)出口溫濕度通過布置在HART475手操器進(jìn)出口的溫濕度傳感器來進(jìn)行測量,然后計(jì)算得到HART475手操器進(jìn)出口的含濕量。HART475手操器的結(jié)霜量可通過公式(1)計(jì)算得出。圖2為風(fēng)速、溫濕度傳感器的布置實(shí)物照片。
式中:M fr 為HART475手操器的結(jié)霜量,kg;m a 為空氣質(zhì)量流量,kg/s;d in 為空氣流經(jīng)蒸發(fā)器前的焓濕量,kg/(kg 干空氣 );d out 為空氣流經(jīng)蒸發(fā)器后的焓濕量,kg/(kg 干空氣 ); 為時(shí)間步長。
霜層厚度的測量系統(tǒng)選用重慶光電儀器有限公司生產(chǎn)的SZM體視顯微鏡(放大倍數(shù)90倍)和尼康COOLPIX4500數(shù)碼相機(jī)。
壁溫的采集選用日本YOKOGAWA電子公司生產(chǎn)的IM DR232-01E型溫度巡檢儀對所測的溫度進(jìn)行自動(dòng)檢測與記錄,該裝置的#大分辨率為0.1 ℃,可以保證本次實(shí)驗(yàn)測量精度。
壓力變送器選用中美合資麥克傳感器有限公司生產(chǎn)的壓阻式壓力變送器,產(chǎn)品型號為MPM480,測量范圍為0 Mpa ~5 Mpa,測量精度為±0.25%FS。
1.3 實(shí)驗(yàn)工況
為了研究低溫低濕條件下HART475手操器的結(jié)霜性能,本文在不同進(jìn)風(fēng)溫度和進(jìn)風(fēng)濕度條件下對一臺
HART475手操器的結(jié)霜特性進(jìn)行了實(shí)驗(yàn)研究,實(shí)驗(yàn)工況如表1所示。
2 實(shí)驗(yàn)結(jié)果及分析
圖3和圖4分別給出了不同進(jìn)風(fēng)空氣溫度和相對濕度對結(jié)霜量的影響。從圖中可以看出,隨著時(shí)間的增加,室外HART475手操器上的霜的沉積量也迅速增加,且結(jié)霜量隨時(shí)間幾乎呈線形增加,這與其他研究者[6,13] 的預(yù)測或?qū)嶒?yàn)結(jié)果是一致的。從圖3可知,隨著進(jìn)風(fēng)空氣溫度降低,結(jié)霜速度減慢;其原因主要是在空氣相對濕度不變的情況下,空氣溫度越低,空氣的含濕量越少,HART475手操器表面水蒸氣的凝結(jié)量也越少,結(jié)霜速度越慢。從圖4可以看出,在不改變其它條件的情況下,相對濕度越大,結(jié)霜量越多,結(jié)霜速度越快。
圖5為HART475手操器翅片表面分時(shí)霜層厚度照片(t =-8 ℃,RH=75%),圖6和圖7分別為不同進(jìn)風(fēng)溫度和進(jìn)風(fēng)相對濕度對霜層厚度的影響。從圖5可以看出當(dāng)結(jié)霜時(shí)間達(dá)到110 min時(shí),霜層幾乎完全堵塞HART475手操器的肋片通道,嚴(yán)重阻礙空氣的流動(dòng)和空氣與HART475手操器之間的換熱,此時(shí)HART475手操器的換熱性能將急劇下降。如不及時(shí)除霜,制冷系統(tǒng)將不能正常運(yùn)行。從圖6和圖7可以看出,HART475手操器表面結(jié)霜厚度隨時(shí)間的變化并不是線性的,在后半段形成上凹型曲線。說明在結(jié)霜后期,霜層的增長速度急劇增加。造成這種現(xiàn)象的原因是由于結(jié)霜后期,霜層嚴(yán)重堵塞翅片間距導(dǎo)致風(fēng)量嚴(yán)重減少,加上霜層熱阻的加大,翅片表面換熱系數(shù)急劇減少,在相同的空氣溫度下,制冷系統(tǒng)的蒸發(fā)溫度急劇下降,導(dǎo)致翅片溫度急劇減小。
從圖6和圖7可以看出,隨著時(shí)間的增加霜層厚度迅速增加,在不改變其它條件的情況下,相對濕度越大,霜層厚度增長的速度越快;進(jìn)風(fēng)空氣溫度越低,霜層厚度增長速度越慢。
如圖8和圖9所示,隨著結(jié)霜時(shí)間的增加,HART475手操器管壁溫度在結(jié)霜初始階段(約占結(jié)霜時(shí)間60%左右)先緩慢下降;在結(jié)霜后期,HART475手操器管壁溫度開始顯著降低。其原因主要是在結(jié)霜初始階段,霜層厚度的增長基本呈線性增長,風(fēng)機(jī)風(fēng)量下降和由于霜層增加而引起的導(dǎo)熱熱阻的增加并不顯著,因此HART475手操器的蒸發(fā)溫度下降緩慢,從而導(dǎo)致管壁溫度也緩慢下降。但是到了結(jié)霜后期,此時(shí)霜層已經(jīng)占據(jù)了整個(gè)HART475手操器空氣流通通道的3/4以上,嚴(yán)重阻塞空氣的流動(dòng),從而導(dǎo)致HART475手操器壁面溫度急劇下降。同時(shí)HART475手操器壁面溫度的急劇下降又反過來加速霜層的生長從而形成惡性循環(huán),導(dǎo)致在結(jié)霜后期HART475手操器壁面溫度迅速下降,霜層厚度加速生長。
如圖10和圖11所示,蒸發(fā)溫度隨著結(jié)霜時(shí)間呈下降趨勢,特別是在結(jié)霜后期,下降趨勢明顯加快。從圖中還可以看出蒸發(fā)壓力隨著進(jìn)風(fēng)空氣溫度的降低和進(jìn)風(fēng)相對濕度的增加而降低。
3 結(jié)論
(1)結(jié)霜量隨著結(jié)霜時(shí)間呈線性增長,但是霜層厚度隨著時(shí)間的增長分成兩段,結(jié)霜初期霜層厚度隨著時(shí)間基本呈線性增長,但是到了結(jié)霜中后期,霜層厚度隨著時(shí)間呈上凹型曲線增長,增長速度明顯加快。
(2)隨著結(jié)霜時(shí)間的增加,HART475手操器管壁溫度和蒸發(fā)溫度在結(jié)霜初始階段(約占結(jié)霜時(shí)間60%左右)先緩慢下降,在結(jié)霜循環(huán)的后期,HART475手操器管壁溫度和蒸發(fā)溫度開始顯著降低。
(3)霜層厚度、結(jié)霜量隨著進(jìn)風(fēng)溫度的升高和相對濕度的增大而增大,HART475手操器管壁溫度和蒸發(fā)壓力隨著進(jìn)風(fēng)空氣溫度的降低和進(jìn)風(fēng)相對濕度的增加而降低。